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Deep Learning Revolution

• Recent machine learning methods for training 
“deep” neural networks (NNs) have demonstrated 
remarkable progress on many challenging AI 
problems (e.g. speech recognition, visual object 
recognition, machine translation, game playing).

• However, their capabilities are prone to “hype.”

• Deep learning has not “solved” AI and current 
methods have clear limitations.
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Very Brief History of Machine Learning

• Single-layer neural networks (1957-1969)

• Symbolic AI & knowledge engineering (1970-1985)

• Multi-layer NNs and symbolic learning (1985-1995)

• Statistical (Bayesian) learning and kernel methods 
(1995-2010)

• Deep learning (CNNs and RNNs) (2010-?)
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Single-Layer Neural Network
(Linear Threshold Unit)

• Mathematical model of an individual neuron.
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Perceptron

• Rosenblatt (1957) developed an iterative, 
hill-climbing algorithm for learning the 
weights of single-layer NN to try to fit a set 
of training examples.

• Unable to learn or represent many 
classification functions (e.g. XOR), only the 
“linearly separable” ones are learnable.
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Perceptron Learning Rule

• Update weights by:

where η is the “learning rate,” t is the teacher output, 
and o is the network output.

• Equivalent to rules:
– If output is correct do nothing.

– If output is high, lower weights on active inputs

– If output is low, increase weights on active inputs
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Perceptron Learning Algorithm

• Iteratively update weights until convergence.

Initialize weights to random values
Until outputs of all training examples are correct

For each training pair, E, do: 
Compute current output o for E given its inputs
Compare current output to target value, t , for E
Update weights using learning rule

Perceptron Demise

• Perceptons (1969) by Minksy and Papert
illuminated the limitations of the perceptron.

• Work on neural-networks dissipated during 
the 70’s and early 80’s.
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Neural Net Resurgence (1986)

• Interest in NNs revived in the mid 1980’s 
due to the rise of “connectionism.”

• Backpropagation algorithm popularized for 
training three-layer NN’s.

• Generalized the iterative “hill climbing” 
method to approximate fitting two layers of 
synaptic connections, but no convergence 
guarantees. 9
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3-Layer NN Backpropagation
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Second NN Demise (1995-2010) 

• Generic backpropagation did not generalize 
that well to training deeper networks.

• Little theoretical justification for underlying 
methods.

• Machine learning research moved to 
graphical models and kernel methods.
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Deep Learning Revolution (2010…)

• Improved methods developed for training deep 
neural works.

• Particular successes with:
– Convolutional neural nets (CNNs) for vision.

– Recurrent neural nets (RNNs) for machine 
translation and speech recognition.

– Deep reinforcement learning for game playing.
12
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Massive Data and Specialized Hardware  

• Large collections of supervised 
(crowdsourced) training data has been 
critical.

• Efficient processing of this big data using 
specialized hardware (Graphics Processing 
Units, GPUs) has been critical.

13

CNNs

• Convolutional layers learn to extract local features from 
image regions (receptive fields) analogous to human vision 
(LeCun, et al., 1998).

• Deeper layers extract higher-level features.

• Pool activity of multiple neurons into one at the next layer 
using max or mean.

• Nonlinear processing with Rectified Linear Units (ReLUs)

• Decision made using final fully connected layers.
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CNNs

Increasingly

broader local

features extracted

from image regions
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ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC)

• Recognize 1,000 categories of objects in 150K test 
images (given 1.2M training images).
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Mongoose Canoe Missile Trombone

ImageNet Performance Over Time
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CNNs

introduced

Recurrent Neural Networks (RNNs)

• Add feedback loops where some units’ 
current outputs determine some future 
network inputs.

• RNNs can model dynamic finite-state 
machines, beyond the static combinatorial 
circuits modeled by feed-forward networks. 
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Simple Recurrent Network (SRN)

• Initially developed by Jeff Elman (“Finding 
structure in time,” 1990).

• Additional input to hidden layer is the state 
of the hidden layer in the previous time 
step.

19http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolled RNN

• Behavior of RNN is perhaps best viewed by 
“unrolling” the network over time.
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Training RNN’s
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Training
outputs

Training 
inputs

backpropagated errors
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• RNNs can be 
trained using 
“backpropagation 
through time.”

• Can viewed as 
applying normal 
backprop to the 
unrolled network.
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Vanishing/Exploding Gradient Problem

• Backpropagated errors multiply at each 
layer, resulting in exponential decay (if 
derivative is small) or growth (if derivative 
is large).

• Makes it very difficult train deep networks, 
or simple recurrent networks over many 
time steps.
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Long Distance Dependencies

• It is very difficult to train SRNs to retain 
information over many time steps.

• This make is very difficult to learn SRNs that 
handle long-distance dependencies, such as 
subject-verb agreement.
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Long Short Term Memory (LSTM)

• LSTM networks, add additional gating units in each 
memory cell (Hochreiter & Schmidhuber, 1997).
– Forget gate

– Input gate

– Output gate

• Prevents vanishing/exploding gradient problem and 
allows network to retain state information over 
longer periods of time.
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LSTM Network Architecture
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Bi-directional LSTM (Bi-LSTM)

• Separate LSTMs process 
sequence forward and 
backward and hidden 
layers at each time step 
are concatenated to form 
the cell output.
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Sequence to Sequence (Seq2Seq) Transduction

• Encoder/Decoder framework maps one sequence to a 
"deep vector" then another LSTM maps this vector 
to an output sequence (Sutskever et al., 2014).
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I1, I2,…,In
Encoder
LSTM

O1, O2,…,Omhn
Decoder
LSTM

• Train model "end to end" on I/O pairs of 
sequences.
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Neural Machine Translation (NMT)

• LSTM Seq2Seq has lead to a new approach 
to translating human language.

• NMT modestly outperforms previous 
statistical learning approaches to MT 
(SMT).
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NMT Results (Wu et al., 2016)

• Experimental results using automated 
(BLEU) and human evaluation for 
English French translation.
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Method BLEU Human Rating

SMT 37.0 3.87

NMT 40.35 4.46

Human 4.82

LSTM Application Architectures

30

Image Captioning Video Activity Recog
Text Classification

Video Captioning
Machine Translation

POS Tagging, IE,
Language Modeling
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Independent Word Vectors

• Represent word meanings as vectors based 
on words with which they co-occur.

• Neural approaches based on predicting a 
word’s context (skip-grams) from its vector 
(Word2Vec, Mikolov et al., 2013).

• Fails to account for lexical ambiguity or 
dependence of word meaning on context.
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Bidirectional Language Model

• A standard statistical language model predicts 
the probability of the next word based on the 
previous context.
– Your program for Project 4 does not _____

• A bidirectional language model (BiLM) 
predicts the word at each position based on 
both prior and posterior context encoded using 
an RNN (e.g. LSTM). 32

Contextualized Word Embeddings

• Produce a vector representation for a 
specific occurrence of a word, by using 
textual context to compute its meaning.

• ELMo (Embeddings from Language 
Models, Peters et al., 2018) uses the hidden 
state of a BiLM to compute contextualized 
word embeddings.
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Transformer Networks

• An alternate Seq2Seq neural architecture 
based on attention rather than recurrence 
(Vaswani et al., 2017).

• Attention mechanisms compute the output 
at each position in the sequence by varying 
“attention” across different positions in the 
input sequence.
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Transformer Architecture
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BERT Contextualized Embeddings

• Bidirectional Encoder Representations from 
Transformers (BERT, Devlin et al., 2018)

• Trains a transformer network to predict a 
fraction of “masked” tokens in an input 
sentence, or predict the next sentence.
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BERT Architecture
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Neural Information Retrieval

• Word embeddings have been used to 
improve IR by allowing matching words 
based on semantic similarity.

• Most recent results (Dai & Callan, SIGIR-
2019) show improvements to ad-hoc 
document retrieval using BERT transformer 
approach.
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BERT IR Results
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“Cramming” Meaning into Vectors

• DNNs force semantics to be encoded into 
real-valued vectors.

• Structured meaning representations that 
exploit trees, graphs, and logical 
representations are only imperfectly 
encoded as vectors.
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Complex Compositional Questions

“Has Woody Allen made more movies with 
Diane Keaton or Mia Farrow.”
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𝑎𝑟𝑔max
௑∈{஽௜௔௡௘௄௘௔௧௢௡,

    ெ௜௔ி௔௥௥௢௪}

𝑐𝑜𝑢𝑛𝑡(𝑌, 𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟 𝑌, 𝑊𝑜𝑜𝑑𝑦𝐴𝑙𝑙𝑒𝑛

⋀𝐶𝑎𝑠𝑡 𝑌, 𝑋 )

Conclusions

• Machine learning, and specifically neural nets, has a 
a long, rich, varied history.

• Deep learning has made significant recent progress.

• Progress is continuing and holds promise of enabling 
revolutionary technology.

• However, progress has been exaggerated and core AI 
problems are a long way from completely solved.
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